Steric limitations in the interaction of the ATP binding domains of the ArsA ATPase.
نویسندگان
چکیده
ArsA, the catalytic subunit of an anion-translocating ATPase, has two consensus nucleotide binding sites, one N-terminal and one C-terminal. A mutation producing a G15C substitution in the N-terminal domain resulted in substantial reductions in arsenite resistance, transport, and ATPase activity. A second site revertant (A344V) adjacent to the C-terminal nucleotide binding site was previously shown to restore arsenite resistance, suggesting the interaction of the nucleotide binding sites in ArsA (Li, J., Liu, S., and Rosen, B. P. (1996) J. Biol. Chem. 271, 25247-25252). In this study, it is shown that alteration of Ala-344 to bulkier residues, including Cys, Thr, Pro, Asp, Leu, Phe, Tyr, or Arg, also suppressed the G15C substitution. However, A344G or A344S substitutions only marginally suppressed the primary mutation. Alteration of Gly-15 to Ala, Cys, Asp, Tyr, or Arg each resulted in decreased arsenite resistance. The larger the residue volume of the substitution, the lower the resistance, with a G15R substitution producing the least resistance. Resistance in a strain expressing an arsA gene encoding the G15R substitution could be rescued by A344S, A344T, A344D, A344R, or A344V second site suppressors. The larger the residue is then the greater the suppression is. The in vitro ArsA ATPase activities from purified wild type, G15A, G15C, and G15R exhibits an inverse relationship between activity and residue volume. Purified G15A and G15C exhibited both an increase in the Km for ATP and a decrease in Vmax. The results are consistent with a physical interaction of the two nucleotide binding domains and indicate that the geometry at the interface between the N- and C-terminal nucleotide binding sites places spatial constraints on allowable residues in that interface.
منابع مشابه
Antimonite regulation of the ATPase activity of ArsA, the catalytic subunit of the arsenical pump.
The ArsA ATPase is the catalytic subunit of the pump protein, coupling the hydrolysis of ATP to the movement of arsenicals and antimonials through the membrane-spanning ArsB protein. Previously, we have shown the binding and hydrolysis of MgATP to ArsA to be a multi-step process in which the rate-limiting step is an isomerization between different conformational forms of ArsA. This isomerizatio...
متن کاملMolecular dynamics simulation and docking studies on the binding properties of several anticancer drugs to human serum albumin
Disposition and transportation of anticancer drugs by human serum albumin (HSA) affects their bioavailability, distribution and elimination. In this study, the interaction of a set of anticancer drugs with HSA was investigated by molecular dynamics and molecular docking simulations. The drugs' activities were analyzed according to their docking scores, binding sites and structural descriptors. ...
متن کاملSubstrate-induced dimerization of the ArsA protein, the catalytic component of an anion-translocating ATPase.
The ArsA protein, the catalytic component of the plasmid-encoded resistance system for removal of the toxic oxyanions arsenite, antimonite, and arsenate from bacterial cells, catalyzes oxyanion-stimulated ATP hydrolysis. Three lines of evidence suggest that the ArsA protein functions as a homodimer. First, the ArsA protein was modified with 5'-p-fluorosulfonyl-benzoyladenosine (FSBA). Antimonit...
متن کاملStructure-function relationships in an anion-translocating ATPase.
The ArsAB ATPase is an efflux pump located in the inner membrane of Escherichia coli. This transport ATPase confers resistance to arsenite and antimonite by their extrusion from the cells. The pump is composed of two subunits, the catalytic ArsA subunit and the membrane subunit ArsB. The complex is similar in many ways to ATP-binding cassette ('ABC') transporters, which typically have two group...
متن کاملInvestigation the Mechanism of Interaction between Inhibitor ALISERTIB with Protein Kinase A and B Using Modeling, Docking and Molecular Dynamics Simulation
The high level of conservation in ATP-binding sites of protein kinases increasingly demandsthe quest to find selective inhibitors with little cross reactivity. Kinase kinases are a recently discovered group of Kinases found to be involved in several mitotic events. These proteins represent attractive targets for cancer therapy with several small molecule inhibitors undergoing different ph...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 273 12 شماره
صفحات -
تاریخ انتشار 1998